<u>NO SIMPLE GEOMETRIC SHAPE THAT</u> <u>APPROXIMATES THE RV</u>

<u>IT'S « WRAPPED AROUND » THE LV IN A</u> <u>U-SHAPED FASHION</u>

ANATOMY

- RV IS THE <u>MOST ANTERIORLY</u> SITUATED CARDIAC CHAMBER
- ITS SHAPE IS <u>COMPLEX</u>
- RV APPEARS TRIANGULAR (SIDE VIEW) AND CRESCENT SHAPED (CROSS SECTION)
- RV SHAPE INFLUENCED BY:
 - INTERVENTRICULAR SEPTUM
 - LOADING AND ELECTRICAL CONDITIONS
- MULTIPLE LAYERS OF MYOFIBERS
- THREE MUSCULAR BANDS:
 - PARIETAL BAND
 - SEPTOMARGINAL BAND
 - MODERATOR BAND

ANATOMY

- <u>THE INLET</u> WHICH CONSIST IN TRICUSPID VALVE, CHORDAE THENDINAE, AND PAPILLARY MUSCLE
- <u>THE TRABECULATED</u> <u>APICAL MYOCARDIUM</u>
- <u>THE INFUNDIBULUM</u> <u>OR CONUS</u> THAT CORRESPONDS TO THE SMOOTH OUTFLOW REGION

IMAGING IS CHALLENGING

- Complex geometry of RV
- The limited definition of RV endocardial surface caused by the <u>heavily trabeculated</u> <u>myocardium</u>
- The retrosternal position of the RV, which can limit echocardiographic imaging windows
- The marked load dependence of indices of <u>RV function</u>

MULTIMODALITY APROACH TO EVALUATE STRUCTURE AND FUNCTION

CLINICAL PRACTICE

- <u>Echocardiography</u> is the mainstay of evaluation of RV structure and function.
 Compared with other modalities, it offers the advantages of versatility and availability
- <u>Cardiac magnetic resonance</u> <u>imaging</u> (MRI) is increasingly used as a standard tool in the evaluation of RV structure and function.
- MRI is the most accurate method for assessing RV volume and function

- CMR has emerged as the referenced standard technique to evaluate a large variety of RV disease
- Impact on a patient's prognosis and therapeutic management
- Accurate and reproducible assessment of <u>function</u> and <u>tissue characterisation</u>

VOLUME: 2D imaging

- <u>Two dimensional imaging</u>:
 - performe poorly
 - inaccurate for quantitative analysis
 - current clinical practice is visual assessement to gauge RV size relative to that of LV
- RV is only 2/3 the size of LV in apical 4-chamber
- Failure to include infundibulum (25% of volume)

VOLUME: 3D imaging

- 3D imaging with <u>analysis</u> using multiple slice technique
- <u>More accurate</u>: reliance on geometric modelling is eliminated
- Contours the RV endocardium of each « slice »
- <u>Volume « slice</u> » = area of each slice X slice thickness
- <u>RV volume</u> = summation of volume »slice »

ED phase

ES phase

Short axis view

Mme SON...

Mme SON...

4 chambers view

2 chambers view

VOLUME: 3D imaging

- Tracing of the RV borders in 8-10 slices at ED et ES phases
- <u>LIMITATIONS</u>
- Automated segmentation
- Consider
 - –heavy trabeculation of RV
 - -prominent intraventricular structures
 - -complex shape

<u>3D echo vs. MRI</u>

END-DIASTOLIC VOLUME

END-SYSTOLIC VOLUME

RV Ejection Fraction

- <u>RVEF</u> is the most commonly used index of contractility of RV but is <u>highly dependent</u> <u>on loading condition</u>
- Same limitations that volume evaluation
- RVEF lower than LVEF
- Normal range: 47-76%
- RVFA: > 32%

Normal value for RV

Man

EF EDVI ESVI SV 47-74% 55-105 16-48 32-64

Woman

47-80% 48-87 ml/m² 20-32 ml/m² 27-57 ml/m²

LORENZ CH, 1999

REFERENCE RV VOLUME MASS

Table 8RV summary data for all ages (mean \pm SD, 95% confidence interval)			
	All	Males	Females
EDV (mL)	144 ± 23 (98, 190)	163 ± 25 (113, 213)	126 ± 21 (84, 168)
EDV/BSA (mL/m ²)	78 ± 11 (57, 99)	83 ± 12 (60, 106)	73±9 (55, 92)
ESV (mL)	50 ± 14 (22, 78)	57 ± 15 (27, 86)	43 ± 13 (17, 69)
ESV/BSA (mL/m ²)	27±7 (13, 41)	29 ±7 (14, 43)	25±7 (12, 38)
SV (mL)	94 ± 15 (64, 124)	106 ± 17 (72, 140)	83 ± 13 (57, 108)
SV/BSA (mL/m ²)	51±7 (37, 65)	54±8 (38, 70)	48±6 (36, 60)
EF (%)	66±6 (54, 78)	66±6 (53, 78)	66±6 (54, 78)
EF/BSA (%/m ²)	36±5 (27, 45)	34±4 (26, 41)	39±5 (29, 49)
Mass (g)	48 ± 13 (23, 73)	66 ± 14 (38, 94)	48 ± 11 (27, 69)
Mass/BSA (g/m ²)	31±6 (19, 43)	34±7 (20, 47)	28±5 (18, 38)
PFR _E (mL/s)	371 ± 125 (126, 615)	405 ± 137 (137, 674)	337 ± 117 (107, 567)
PFR _E /BSA (mL/m ²)	202 ± 69 (67, 337)	207 ± 70 (68, 345)	197 ± 68 (64, 330)
PFR _E /EDV (/s)	2.6 ± 0.8 (1.0, 4.1)	2.4 ± 0.75 (1.0, 3.9)	2.7 ± 0.85 (1.0, 4.3)
PFR _A (mL/s)	429 ± 168 (99, 759)	489 ± 175 (146, 833)	368 ± 153 (67, 668)
PFR _A /BSA (mL/m ²)	233 ± 93 (50, 415)	250 ± 94 (66, 434)	215 ± 89 (40, 390)
PFR _A /EDV (/s)	3.0 ± 1.0 (1.0, 5.1)	3.1 ± 1.0 (1.0, 5.2)	2.9 ± 1.0 (0.9, 5.0)
PFR _E /PFR _A	0.9 ± 0.47 (-0.1, 1.8)	0.8 ± 0.49 (-0.1, 1.8)	0.9 ± 0.46 (0.0, 1.8)
Septal AVPD (mm)	14 ± 3.6 (6, 21)	15 ± 4.1 (6, 23)	13 ± 3.0 (7, 19)
Septal AVPD/long length (%)	17 ± 4.2 (9, 25)	17 ± 4.5 (8, 26)	17 ± 3.9 (9, 25)
Lateral AVPD (mm)	21 ± 3.9 (13, 29)	22 ± 4.4 (13, 30)	21 ± 3.5 (14, 27)
Lateral AVPD/long length (%)	23 ± 4.0 (15, 31)	23 ± 4.1 (15, 31)	24 ± 4.0 (16, 32)

EUR HEART JOURNAL 2006

<u>TAPSE</u>: good correlation with RVEF

- <u>Simple M-mode</u>
- Longitudinal excursion of the lateral tricuspid annulus towards the apex
- Normal value: > 15 mm
- Not limited by endocardial border recognition
- But limitations:
 - ignores the outlet portion and the septal contribution
 - reduced accuracy after cardiac surgery
 - 1D and angle-dependent
 - regional abnormalities neglected

Flow evaluation

The non-ischemic

PATHOLOGICAL ASPECTS

- Diffuse or segmental loss of the myocardium of the RV free wall and its replacement by fibrofatty tissue
- Frequently transmural
- Triangle of the dysplasia: diaphragmatic, apical and infundibular regions
- The wavefront progression of the process occurs from the subepicardium to the endocardium

- Postmortem MRI
- Extensive hyperintense signal at the level of the RV wall compatible with fat
- Note close relationship between presence of fat at pathology and hyperintense areas at MRI

- Asymptomatic 17 years old boy died suddenly during a soccer game
- In vitro MRI crosssectional view
- Uniformly whitish RV free wall ant and inf aneurysm
- Spotty involvement of the posterolateral wall of the LV
- Infundibular and inferior subtricuspidal aneurysm

- 26 years old male cyclist died suddenly at rest
- In vitro MRI shows bright streaks in the pulmonary infundibulum
- Fibrofatty replacement

Factor	Major criteria	Minor criteria
<u>Global or regional</u> <u>dysfunction and</u> <u>structural alterations</u>	Severe dilatation of the RV and reduced RV EF, severe segmental dilatation of the RV, localized RV aneurysm (akinetic or dyskinetic areas with diastolic bulging)	<i>Mild dlatation of the RV or reduced RV EF, mild segmental dilatation of the RV, regional RV hypokinesia</i>
<u>Tissue</u> characterization	Fibrofatty replacement of RV myocardium at endocardial biopsy	
Repolarization abnormalities		Inverted T waves (V2-V3)
Depolarization or conduction abnormalities	<i>Epsilon waves or prolonged</i> <i>QRS complex (>110 msec)</i> <i>in V1-V3</i>	Late potentials
<u>Arrhythmias</u>		VT with LBBB, frequent VES
<u>Familial history</u>	Familial disease confirmed at necropsy or surgery	Familial history of premature sudden death due to suspected ARVC, familial history (clinical diagnosis based on present criteria)

REVISED TASK FORCE MR CRITERIA

MAJOR CRITERIA

 Regional RV akinesia or dyskinesia or dyssynchronous contraction &

 Ratio of RV end-diastolic volume to BSA > 110 ml/m2

or

- RV ejection fraction < 40%

A.R.V.D.

A.R.V.D.

LV 36% Vol 84-53 ml/m²

RV 26% Vol 146-108 ml/m² Centre Cardiothoracique de Monaco

RV motion abnormalities

RV motion abnormalities

- Axial T1-weighted black blood spin-echo images
- Diffuse thinning and fatty replacement of the RV and the RVOT
- These are major criterion for diagnosis of ARVD

- Axial T1-weighted gradient-echo images
- Anterior focal bulging of the RVOT

CARDIAC AMYLOIDOSES

- Multiorgan involvement
- Clinical: CHF to sudden cardiac death
- ECG: low-voltage (infiltration !!!)
- ECHO: « granular sparkling » myocardium
 - biventricular thickening valvular infiltration restrictive pattern (strain)
- Elevated right-sided filling pressure
- <u>Tissue biopsy required (abdominal</u> fat) and consider cardiac biopsy

CMR

E.F. 64% EDVI 56 ml/m2 ESVI 20 ml/m2 *Mass 105 g/m2* CI 2.2 l/min LA 63 ml/m2 RA 5.6x6 cm.

- Biventricular thickening
- Dilation of atria
- No RV dilation

RIGHT HEART FAILURE

Endomyocardial fibrosis

Intense endocardial fibrotic thickening of the apex and subvalvular regions of one or both ventricles that results in obstruction to inflow of blood

Endomyocardial fibrosis

Endomyocardial fibrosis

The post operative control

Pulmonary embolism

Initial Study

Post operative

pulmonary thromboendarteriectomy

Constrictive pericarditis

Right mass

PARAGANGLIOMA

RIGHT ATRIAL MIXOMA

Cardiac Tumor

M 73 y

T1 TSE

Centre Cardiothoracique de Monaco

The ischemic

RV myocardial infarction

Centre Cardiothoracique de Monaco

Oedema and MVO

Myocardial Infarction Complications : VSD

SEPTAL RUPTURE

The « congenital diseases »

Tetralogy of Fallot <u>Post operative follow-up:</u> <u>- timing of surgical intervention</u>

- Pulmonary regurgitation

Re-intervention
 (pulmonary prosthesis) if
 RVEDV > 160 ml/m²
 RVESV > 80 ml/m²

- Anatomy of pulmonary branches

RF 63%

Tetralogy of Fallot <u>Post operative follow-up:</u> - timing of surgical intervention (the must or CMR)

- <u>The degree of RV dilatation</u> secondary to chronic volume load
 - RV function and volumes
 - Follow up of aortic regurgitation and sub valvular aortic membranes

Tetralogy of Fallot

Myocardial viability

Ventricular fibrosis like a marker of adverse clinical outcome

TGA: arterial switch

Follow the LV and RV volumes and EF

Mustard for TGA

34 y man
Mustard at 1y
asymptomatic

RV: EF 42% EDVI 110 ml/m² ESVI 64 ml/m²

Late enhancement fibrosis like negative prognostic value

CIRC 2008

Double outlet RV

- RV is enlarged with huge VSD in the inlet segment
- Double outlet right ventricle
- Mitral valve regurgitation
- A-V concordance
- No overriding or straddling of TV and MV

DOUBLE DISCORDANCE

Fonction of systemic right ventricleStudy of tricuspid regurgitationStudy of pulmonary branches

LV-pulm

RV-aorta

DOUBLE DISCORDANCE

- 11 y boy, asymptomatic. Situs inversus
- Levocardie

RV – EF 40% EDVI 86 ml/m² ESVI 51ml/m²

Echography: trabeculation of RV apex : diagnosis of non compaction ?

Mlle CH...

jan 2011

but « marecageuse » or swampy aspect of apex due to residual non fonctional fistula

MRI: no non compaction RV

Mlle CH.

14 fev 2011

Msct axial

Ebstein

Ebstein

Ebstein's correction

Ebstein's correction

TAKE HOME MESSAGES

- Imaging the RV remained <u>clinically challenging</u>
- Difficult because of <u>complex structural geometry</u>
 of RV
- <u>MRI</u> is considered the gold standard
- <u>3D echocardiography</u> accurate alternative
- <u>2D echocardiography good visual assessement</u> in clinical daily practice (TAPSE)
- Cath lab. and MSCT

The future

Mapping

MULTIMODALITY APROACH

<u>« THUS THE RIGHT VENTRICLE MAY BE</u> <u>SAID TO BE MADE FOR THE SAKE TO</u> <u>TRASMITTING BLOOD THROUGH THE</u> <u>LUNGS, NOT FOR NOURISHING THEM »</u>

SIR WILLIAM HARVEY 1616 DE MOTU CORDIS

