ARYTHMIES VENTRICULAIRES

INDICATION ESC 2022 ET APPORT DE L'IMAGERIE EN RYTHMO

Frédéric Sacher, MD, PhD

University of Bordeaux Bordeaux University Hospital LIRYC Institute FRANCE

RELATIONSHIP WITH INDUSTRY

 Speaking honorarium: Biosense Webster, Boston Scientific, Medtronic, Abbott, Microport, Bayer Healthcare

 Consulting fees: Boston scientific, Bayer Healthcare, Inheart

IMAGING IN VENTRICULAR ARRHYTHMIAS

In patients with PVCs/VT and a presentation not typical for an idiopathic origin,^c CMR should be considered, despite a normal echocardiogram.

Zeppenfeld K et al. EHJ 2022

lla

IMAGING IN VENTRICULAR ARRHYTHMIAS

In patients with PVCs/VT and a presentation not typical for an idiopathic origin, ^c CMR should be considered, despite a normal echocardiogram.		
In patients with an unexplained reduced EF and a PVC burden		
of at least 10%, PVC-induced cardiomyopathy should be	lla	
considered.		

In patients with suspected PVC-induced cardiomyopathy, CMR should be considered.

CMR with LGE should be considered in DCM/HNDCM patients for assessing the aetiology and the risk of VA/SCD.

lla

SCAR IDENTIFICATION

Epicardial substrate

Intraseptal substrate

SCAR IDENTIFICATION

Epicardial substrate

Intraseptal substrate

INDICATION OF ABLATION IN IDIOPATHIC/NICMP

lla

lla

Idiopathic PVC/VT and PVC-induced cardiomyopathy

Catheter ablation as first-line treatment is recommended for symptomatic idiopathic VT/PVCs from the RVOT or the left fascicles.

Beta-blockers or non-dihydropyridine CCBs are indicated in symptomatic patients with idiopathic VT/PVCs from an origin other than the RVOT or the left fascicles.

Beta-blockers, non-dihydropyridine CCBs or flecainide should be considered when catheter ablation is not available, not desired, or is particularly risky in symptomatic patients with idiopathic VT/PVCs from the RVOT or the left fascicles. Catheter ablation or flecainide should be considered in symptomatic patients with idiopathic VT/PVCs from an origin other than the RVOT or the left fascicles.

In non-responders to CRT with frequent, predominately monomorphic PVCs limiting optimal biventricular pacing despite pharmacological therapy, catheter ablation or AADs should be considered.	lla
Catheter ablation may be considered for idiopathic VT/PVCs in asymptomatic patients with repeatedly more than 20% of PVCs per day at follow-up.	Шb
Amiodarone as a first-line treatment is not recommended in patients with idiopathic VTs/PVCs.	ш

IMAGING CAN PLAY A ROLE FOR SCAR RELATED VA ABLATION

Before ablation

- Elimination of thrombus (LV but also left appendage in case of transeptal access)
- diagnosis of VT substrate and need for epicardial access
- feasibility and risk of epicardial access

To guide ablation

- accurate definition of the substrate to target
- identifying structures at risk (coronaries, phrenic)
- And improve outcome?

After ablation

- characterization of lesion formation (transmurality)
- detection of complications (steam pop)

IMAGING CAN PLAY A ROLE BEFORE ABLATION

Elimination of intra-cardiac thrombus

OR	LOE	Recommendations
• • • • • • • • • •	•••••	

B-NR 1. In patients with LV dysfunction undergoing catheter ablation of VA, preprocedural or intraprocedural imaging is recommended to rule out cardiac thrombi.

Cronin E et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. EUROPACE 2019 Beavers DL et al. Cardiovasc Electrophysiol. 2021 Sep;32(9):2473-2483. Bonnin T et al. Europace 2023 Feb 16;25(2):487-495. doi: 10.1093

EXAMPLE FROM DR MARCHAND

BETTER UNDERSTANDING OF THE ANATOMY/SUBSTRATE IN COMPLEX SITUATION

SCAR IDENTIFICATION

Isthmus identification with HR cMRI in Fallot patients

Cochet H et al. HRS 2012, Rivas-Gandara N et al. HR 2021

d-TGA / DORV with surgical repair

Case from Nicolas Combes, Clinique Pasteur, Toulouse, France

CORONARY ARTERY DISEASE

In patients with CAD and recurrent, symptomatic SMVT, or ICD shocks for SMVT despite chronic amiodarone therapy, catheter ablation is recommended in preference to escalating AAD therapy.

In patients with CAD and haemodynamically well-tolerated	
SMVT and LVEF \geq 40%, catheter ablation in experienced	lla
centres should be considered as an alternative to ICD therapy,	
provided that established endpoints have been reached. ^b	
Catheter ablation should be considered in patients with CAD	
and recurrent, symptomatic SMVT, or ICD shocks for SMVT	lla
despite beta-blocker or sotalol treatment.	

IMAGING CAN PLAY A ROLE

Before ablation

- Elimination of thrombus (LV but also left appendage in case of transeptal access)
- diagnosis of VT substrate and need for epicardial access
- feasibility and risk of epicardial access

To guide ablation

- accurate definition of the substrate to target
- identifying structures at risk (coronaries, phrenic)
- And improve outcome?

After ablation

- characterization of lesion formation (transmurality)
- detection of complications (steam pop)

VT vs SUBSTRATE MAPPING

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 66, NO. 25, 2015 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2015.10.026

Ablation of Stable VTs Versus Substrate Ablation in Ischemic Cardiomyopathy

The VISTA Randomized Multicenter Trial

	n=58	n=60		
	Substrate-Based Ablation (%)	Clinical Ablation (%)	p Value	HR (95% CI)
VT recurrence rate	15.5 (8.4-27.7)	48.3 (36.6-61.2)	<0.001	0.26 (0.11-0.61)
All-cause mortality rate	8.6 (1.4-14.2)	15.0 (5.9-24.2)	0.21	0.54 (0.17-1.82)
Arrhythmia-related rehospitalization	12.1 (3.8-19.7)	31.7 (22.1-41.6)	0.014	0.31 (0.13-0.78)
Composite: rehospitalization and mortality	20.7 (10.3-30.1)	46.7 (34.0-59.3)	0.003	0.32 (0.17-0.61)
Composite: VT recurrence and mortality	24.1 (13.2-35.1)	63.3 (51.1-75.5)	<0.001	0.20 (0.09-0.43)
Radiofrequency duration (min)	68 ±21	35 ±27		

-UD: 12 MONTINS

CONVENTIONAL SUBSTRATE MAPPING

	Endpoint	Patients	Map density	Type of mapping catheter	RF duration	Endpoint achievement
Jais et al. Circulation 2012	LAVA elimination	56 ICM, 14 NICM	>600	Pentaray, BW	23 min	67%
Vergara et al. JCE 2012	LP elimination	36 ICM, 14 NICM	300-600	Livewire (20 poles) or Inquiry AFocus II, SJM	≈30 min?	84%
Di Biase et al. JACC 2012	Elimination of all abnormal potentials	43 ICM	Endo:370 Epi: 410	? Ablation catheter	74 min	100%
Tung et al. Circ AE 2013	Ablation of interconnected channels	15 ICM, 2 NICM, 5 others	>300 Mediane614	Livewire DecaNav Constellation	?	?
Tilz et al. Europace 2014	Electrical isolation of the substrate	12 isch CMP	550	3.5 mm irrigated-tip catheter	53 ± 15min	50%
Berruezo et al. Circ AE 2015	Ablation of interconnected channels	75 ICM, 26 NICM	Endo:481 Epi: 486	?	28 min	84%
Tzou et al. Circ AE 2015	Core isolation	32 ICM, 12 NICM	Endo:522 Epi: 456	? Ablation catheter	111 RF applic.	84%

<1 <2 <3 <4

Komatsu Y et al. Circ A & E 2013

MRI Signal Intensity

Andreu D. et al. HR 2017

Cardiac MRI or CT scan

	Advantages	Disadvantages
MRI	- Scar identification - No X-ray	 Spatial resolution Acquisition sequences dependant on the company Access Quality of the images in patients with ICD Claustrophobia
CT scan	 Spatial resolution Acquisition sequences identical whatever is the company Easier to get in patients with ICD Scar identification possible (wall thinning and late acquisition) 	X-ray

Cardiac MRI AND CT scan

Cochet et al. JCE2013

- A: MDCT
- B: MRI
- C: fused image
- D: Cardiac chambers and epicardial vessels are segmented from MDCT data
- E: Myocardial scar & gray zone are segmented from MRI

Image integration (and use of multipolar mapping Catheters) associated with fewer VT recurrences

Wolf M, Sacher F et al. Circ AE 2018

Andreu D et al. Heart Rhythm 2017

Platform

--->

Soon: photon-counting CT

~

SUBSTRATE MAPPING AND ABLATION **BASED ON CT SCAN IN ISCHEMIC CMP**

HYPOTHESIS: CHANNELS DELIMITED BY WALL THICKNESS HETEROGENITY

Strategy evaluated:

1) Merge CT scan in 3D mapping 2) CT isthmus ablation 3) Induction -Non inducible: Stop -Inducible: VT mapping & ablation

Potential isthmii based on wall thickness heterogenity identified on CT scan with the MUSIC software in a patient with inferior MI.

- 62 YO MALE WITH INFERIOR MI 20 YEARS AGO - CABG, LVEF 35% - RECURRENT VT

Substrate modelling:

- Wall thinning from arterial time CT
- Late contrast: acquisition 8 min post contrast injection

Aim

- Comprehensive substrate localization
- Pre-procedure strategy
- More efficient/faster procedure

PLANIFICATION OF ABLATION

Preprocedural strategy

Real ablation lesion set

Non-Inducible anymore with 37 min RF 95 min procedure 8 min X-ray; AK 99 mGy

WORKFLOW

Importing images from any imaging modality in 3D system after treatment with dedicated software

 Inheart solution works with all 3D mapping systems (CARTO, Rhythmia, Precision, EnsiteX)

Merging

- Anatomy acquisition in 3D system: CS, Pulmonary artery with the left and right branch or aortic arch depending on the access
- Once merge is OK, Check with ablation catheter at the LV apex to make sure the merge is reliable

WORKFLOW

Ablation of the identified isthmus

- 40-50 Watts for 45-60 sec. sometimes more, depending on impedance drop, signal reduction, catheter position and contact force
- Block the isthmii or at least render them unexcitable (pacing a 10 mA and 2 ms)

Inducibility

- If negative: stop there
- If positive: map and ablate the induced VT

MULTICENTRIC RANDOMISED EUROPEAN STUDY InEurHeart

NCT 05225935

IMAGING TO AVOID COMPLICATIONS

Komatsu Y, Sacher F et al JCE 2013

CT-BASED TARGETS

- Wall thickness channels

wall thickness map

→ channelness filter

FILES EXPORTED TO RADIATION THERAPY

1 target volume + 10 vulnerable structures

